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mean vector that is uniformly distributed on the unit disk.

Date: Original idea conceived December 2013. August 25, 2017 @ 19:06. Filename: "von Mises DPM".
The views expressed herein are the author’s and do not necessarily reflect those of the Federal Reserve

Bank of Atlanta or the Federal Reserve System.





1. Introduction

For an introduction to circular statistics see Pewsey et al. (2013). The authors introduce
the notion of kernel density estimation (from a frequentist perspective) using the von Mises
distribution as the kernel along with a variety of bandwidth selection criteria.

This note describes nonparametric Bayesian density estimation for circular data using
a Dirichlet Process Mixture (DPM) model with the von Mises distribution as the kernel.
A natural prior for the parameters produces a prior predictive distribution for the mean
vector that is uniformly distributed on the unit disk. Other priors are entertained as well.

See Ghosh et al. (2003) for an early foray into this line of research. For more recent work,
see Nuñez-Antonio et al. (2014) and the references therein. See also Damien and Walker
(1999) who provide a Gibbs sampler (via the introduction of two auxiliary variables) for
the parametric case with a conjugate prior. See also Brunner and Lo (1994).

Section 2 introduces the von Mises distribution on the unit circle. Section 3 describes
parametric Bayesian inference using the von Mises distribution. This section covers material
that is used in the section on the DPM. Before proceeding to the DPM, Section 4 provides
a brief introduction to the Bayesian bootstrap. Section 5 presents the DPM model and
provides a numerical example.

2. von Mises distribution

Circular (or directional) data are restricted to the interval θ ∈ [0, 2π). A simple para-
metric probability distribution for circular data is given by the von Mises distribution which
has the following density:1

f(θ|φ) = f(θ|µ, κ) = vonMises(θ|µ, κ) = 1[0,2π)(θ)
eκ cos(θ−µ)

2π I0(κ)
, (2.1)

where

φ = (µ, κ) (2.2)

and Iν( · ) is the modified Bessel function of the first kind (of order ν). Note that

lim
θ→2π

f(θ|φ) = f(0|φ). (2.3)

Figure 1 shows plots of the von Mises distribution with various settings of the parameters µ
and κ. Note that µ ∈ [0, 2π) is a measure of the location of the distribution and κ ∈ [0,∞)
is measure of the precision.2

The density can be expressed in terms of rectangular coordinates as

vonMises(x|m,κ) =
eκm

>x

2π I0(κ)
, (2.4)

where x = (cos(θ), sin(θ)) and m = (cos(µ), sin(µ)), since m>x = cos(θ − µ).

1The indicator function included in (2.1) will be omitted henceforth.
2The precision parameter κ is often referred to as the “concentration parameter.” In this paper we reserve

that appellation for a different parameter (introduced below).
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Figure 1. von Mises distribution shown with various settings of µ and κ.

A distribution on the unit circle implicitly defines a mean vector ξ characterized by
direction and length. In particular, let

z =

∫ 2π

0
ei θ f(θ|φ) dx = eiµ L(κ), (2.5)

where i denotes the imaginary unit and

L(κ) := I1(κ)/I0(κ). (2.6)

See Figure 2 for a plot of λ = L(κ). Note L′(κ) > 0 and λ ∈ [0, 1) for κ ∈ [0,∞). Define

ξ = (ξ1, ξ2) :=
(
<(z),=(z)

)
=
(
λ cos(µ), λ sin(µ)

)
. (2.7)

The domain of ξ is the unit disk. Note λ = ‖ξ‖ and µ = atan2(ξ), where

atan2
(
a cos(θ), a sin(θ)

)
:= θ for θ ∈ [0, 2π), (2.8)

for any a > 0.

3. Parametric Bayesian inference

In this section I describe parametric Bayesian inference as a stepping-stone on the way
to nonparametric inference.

Let θ1:n = (θ1, . . . , θn) denote the observations, which are independent draws from a von
Mises distribution conditional a given value for the parameter θ. Note θi ∈ [0, 2π) and let

xi = (cos(θi), sin(θi)). (3.1)

Note ‖xi‖ = 1.
The likelihood is given by

p(θ1:n|φ) =

n∏
i=1

f(θi|φ). (3.2)

The posterior distribution for the parameters is

p(φ|θ1:n) ∝ p(θ1:n|φ) p(φ), (3.3)
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Figure 2. The length function, λ = L(κ).

where p(φ) denotes the prior distribution for φ. The posterior predictive distribution for
the next observation is

p(θn+1|θ1:n) =

∫
f(θn+1|φ) p(φ|θ1:n) dφ. (3.4)

Sufficient statistics. Let

ζ̂ = (ζ̂1, ζ̂2) =

n∑
i=1

xi. (3.5)

Define
s = ‖ζ̂‖ and µ̂ = atan2(ζ̂). (3.6)

Sufficient statistics are (ζ̂, n) or equivalently (µ̂, s, n).
It is convenient to express the likelihood as3

p(θ1:n|µ, κ) =
exp
(
s κ cos(µ̂− µ)

)
I0(κ)n

= 2π vonMises(µ|µ̂, s κ)
I0(s κ)

I0(κ)n
. (3.7)

omitting the factor 1/(2π)n. Note p(θ1:n|µ, κ = 0) = 1.

Prior distribution. Essentially any prior distribution for φ = (µ, κ) can be accommo-
dated. I consider only isotopic priors for which µ is uniformly distributed over [0, 2π):

p(µ, κ) =
1

2π
p(κ). (3.8)

The associated posterior distribution is given by

p(µ, κ|θ1:n) = vonMises(µ|µ̂, s κ) p(κ|θ1:n) (3.9)

where

p(κ|θ1:n) =
I0(s κ) I0(κ)−n p(κ)∫
I0(s κ) I0(κ)−n p(κ) dκ

. (3.10)

3One may confirm that µ̂ and s/n are the maximum likelihood estimates of µ and λ.
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The conditional distribution for µ is von Mises and does not depend on the prior for κ. The
predictive distribution is

p(θn+1|θ1:n) =

∫
p(θn+1|θn+1, κ) p(κ|θ1:n) dκ, (3.11)

where

p(θn+1|θ1:n, κ) =

∫ 2π

0
vonMises(θn+1|µ, κ) vonMises(µ|µ̂, s κ) dµ =

I0
(
v(θn+1, θ1:n)κ

)
2π I0(κ) I0(s κ)

,

(3.12)

and where

v(θn+1, θ1:n) :=
√

1 + s2 + 2 s cos(θn+1 − µ̂). (3.13)

The conjugate isotropic prior is given by4

p(κ) = Bessel(κ|0, n) =
1

C(0, n) I0(κ)n
, (3.14)

where

C(a, b) =

∫ ∞
0

I0(a κ)

I0(κ)b
dκ (3.15)

and n > 0 can be interpreted as the prior number of observations in favor of isotropy.
Figure 3 shows plots of the prior for three values of n. As n→∞, the prior for κ becomes
concentrated around κ = 0. As n → 0, the prior approaches zero everywhere pointwise.
The limiting prior is improper.

Given the conjugate isotopic prior distribution, the posterior distribution for κ is

p(κ|θ1:n) = Bessel(κ|s, n+ n) =
I0(s κ)

C(s, n+ n) I0(κ)n+n
. (3.16)

The joint posterior is

p(µ, κ|θ1:n) =
1

2π C(s, n+ n)

es κ cos(µ−µ̂)

I0(κ)n+n
, (3.17)

and the marginal posterior for µ is

p(µ|θ1:n) =
1

2π C(s, n+ n)

∫ ∞
0

es κ cos(µ−µ̂)

I0(κ)n+n
dκ. (3.18)

The predictive distribution becomes

p(θn+1|θ1:n) =
C
(
v(θn+1, θ1:n), n+ n+ 1

)
2π C(s, n+ n)

. (3.19)

4The conjugate prior for (µ, κ) is presented in Appendix A.
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Figure 3. Conjugate prior for κ with n = 1/10, 1, 10.

Bayes factor in favor of isotropy. Here I address the question as to the odds in favor of
the proposition that the data come from an isotropic distribution. In this model, isotropy
is characterized by κ = 0.

Let B denote the Bayes factor in favor of isotropy. Then

B =
p(θ1:n|κ = 0)

p(θ1:n)
=
p(κ = 0|θ1:n)

p(κ = 0)
. (3.20)

(The first equality follows from the definition of the Bayes factor; the second follows from
Bayes rule.) First note

p(θ1:n|κ) =

∫ 2π

0
p(θ1:n|µ, κ) p(µ) dµ =

I0(s κ)

I0(κ)n
. (3.21)

Next note p(θ1:n|κ = 0) = 1 (since I0(0) = 1). Therefore, B = 1/p(θ1:n). The likelihood of
the unrestricted model is the average likelihood according to the prior for κ:

p(θ1:n) =

∫ ∞
0

p(θ1:n|κ) p(κ) dκ. (3.22)

For the conjugate prior we have

Bn =
C(0, n)

C(s, n+ n)
, (3.23)

where C(a, b) is given in the Appendix.

Remark. A single observation provides no evidence regarding isotropy, regardless of the

prior for κ, because n = 1, λ̂ = 1, p(θ1|κ) = 1, and p(θ1) = 1. Nevertheless, the posterior
predictive distribution for θ2 will have a peak located at θ1 and the precision of the peak
will depend on the prior for κ.
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Table 1. Roulette data (in degrees counterclockwise from east).

Direction

43 45 52 61 75 88 88 279 357

Figure 4. Circular plot of the roulette data (black dots) with sample mean

vector ξ̂ (red dot). Also shown are bootstrap draws {ξ̂(b)}Bb=1 [see Section 4].

Example: Roulette data. As an example consider the roulette data presented in Table 1
and in Figure 4. There are nine observations of the final orientation of a roulette wheel
after being spun.

Figure 7 shows the Bayes factor in favor of isotropy, Bn. The data favor isotropy only
for small values of n. Posterior predictive distributions are shown in Figure 6. Comparing
Figures 7 and 6 reveals a peculiarity: The prior that produces evidence in favor of isotropy,
n = 10−2, produces the predictive distribution that most deviates from isotropy. This
is because this prior is the flattest (of those examined). This flatness produces the least
shrinkage away from the likelihood. At the same time, the flatness puts the least prior
density at κ = 0, which allows that posterior distribution to place more density there. Also,
larger κ are associated with greater prior correlation between θ1 and θ2.

Once one entertains the idea that the isotropic model might be correct, it behooves one
to continue to entertain both models using updated probabilities. That leads to Bayesian
Model Averaging (BMA). Suppose the prior odds in favor of isotropy were even. Then the
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Figure 5. Posterior distributions for µ given log10(n) = −2,−1, 0, 1, 2.

posterior odds would be given by Bn and the posterior probability in favor of the isotropic
model would be

Bn
1 + Bn

=
C(0, n)

C(0, n) + C(s, n+ n)
. (3.24)

The resulting predictive distribution is

p(θn+1|θ1:n) =
1

2π

C(0, n) + C
(
v(θn+1, θ1:n), n+ n+ 1

)
C(0, n) + C(s, n+ n)

. (3.25)

See Figure 8. As n→ 0, the weight on the isotropic model attenuates the greater deviation
from isotropy in the other component.

Another approach. Here is another approach to exploring the odds for or against isotropy.
Consider the mixture model (which is not an either/or model):

p(θi|µ, κ, ω) = ωUniform(θi|0, 2π) + (1− ω) f(θi|µ, κ), (3.26)

where ω ∼ Uniform(0, 1). Marginal posterior distributions for ω are shown in Figure 9, each
depending on a different prior for κ. Consider two specializations, ω1 and ω2. For each of
the disributions, the Bayes factor in favor of the ω2 model relative to the ω1 model is

p(ω2|θ1:n)

p(ω1|θ1:n)
. (3.27)

In particular, p(ω = 1|θ1:n)/p(ω = 0|θ1:n) = Bn, the Bayes factor in favor of isotropy
discussed above. The plots in Figure 9 suggest that for n ≤ 1 an intermediate value for ω
can produce a model that is more likely than either of the two components.
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Figure 6. Predictive distributions for log10(n) = −2,−1, 0, 1, 2.
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Figure 7. Bayes factor in favor of isotropy, Bn, as a function of n, which
parameterizes the conjugate prior for κ. See (3.23).

4. Bayesian bootstrap

Before proceeding to the fully nonparametric approach, I present the Bayesian bootstrap.
For b = 1, . . . , B, draw u(b) ∈ ∆n−1 using a flat Dirichlet distribution. Then compute

ξ̂(b) =

n∑
i=1

u
(b)
i xi and µ̂(b) = atan2

(
ξ̂(b)
)
. (4.1)

The draws {µ̂(b)}Bb=1 can be used to approximate the posterior distribution for µ.
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Figure 8. BMA predictive distributions for log10(n) = −2,−1, 0, 1, 2.
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Figure 9. Posterior distributions for ω, depending on the prior for n.

In addition, we can compute

λ̂(b) = ‖ξ̂(b)‖. (4.2)
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Figure 10. Predictive distribution using the Bayesian bootstrap.

Let κ̂(b) = K(λ̂(b)), where K(λ) is the inverse relation between λ and κ.5 Then the posterior
predictive distribution is approximated by

p(θn+1|θ1:n) ≈ 1

B

B∑
b=1

vonMises(θn+1|µ̂(b), κ̂(b)). (4.3)

See Figure 10.

5. Nonparameteric Bayesian inference

The Dirichlet process mixture (DPM) model is a Bayesian nonparametric model that
generalizes the parametric model presented in Section 3.

For our purposes, the DPM can be expressed in terms of an infinite-order mixture of von
Mises distributions:

p(θi|ψ) =

∞∑
c=1

wc f(θi|φc), (5.1)

where ψ = (w,φ) and w = (w1, w2, . . .) denotes an infinite collection of nonnegative mix-
ture weights that sum to one and φ = (φ1, φ2, . . .) denotes a corresponding collection of
mixture-component parameters where φc = (µc, κc) or φc = (µc, λc) depending on which

5The inverse function K = L−1 is not available in closed-form. Nevertheless, we can numerically construct
K by evaluating the pair (L(κ), κ) on a grid and forming an interpolating function from the result. The
following grid works well: log10(κ) varies from −10 to 10 in steps of 10−3.
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parametrization is more convenient. Assuming the data can be treated as conditionally
independent, the likelihood is given by

p(θ1:n|ψ) =

n∏
i=1

p(θi|ψ). (5.2)

The prior for ψ can be expressed as

p(ψ) = p(w) p(φ) = p(w)

∞∏
c=1

p(φc). (5.3)

Let the prior for each φc be the same as for φ in the parametric section above. [See (3.8)
and (3.14).] With this prior for φ, the prior predictive distribution is

p(θi) =

∫
p(θi|ψ) p(ψ) dψ =

∫
f(θi|φc) p(φc) dφc = Uniform(θi|0, 2π), (5.4)

which follows from the independence of w from φ and the independence among the com-
ponents of ψ and the isotropic prior.

It remains to specify the prior for the mixture weights. Let

w ∼ Stick(α), (5.5)

where Stick(α) denotes the stick-breaking distribution given by6

wc = vc

c−1∏
`=1

(1− v`) where vc ∼ Beta(1, α). (5.6)

The parameter α controls the rate at which the weights decline on average. In particular,
the weights decline geometrically in expectation:

E[wc|α] = αc−1 (1 + α)−c. (5.7)

Note E[w1|α] = 1/(1 + α) and E
[∑∞

c=m+1wc|α
]

=
(
α/(1 + α)

)m
.

The nonparametric model as expressed in (5.1) specializes to the parametric model de-
scribed in Section 3 as a limiting case:

lim
α→0

∞∑
c=1

p(θi|ψ) = f(θi|φ1). (5.8)

Let the prior distribution for the concentration parameter be given by

p(α) = Log-Logistic(α|1, 1) =
1

(1 + α)2
. (5.9)

With this prior, the Bayes factor in favor of the parametric model is given by p(α = 0|x1:n, I).

6Start with a stick of length one. Break off the fraction v1 leaving a stick of length 1 − v1. Then break
off the fraction v2 of the remaining stick leaving a stick of length (1− v1) (1− v2). Continue in this manner.
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Table 2. Turtle direction data. Orientation of 76 turtles after laying eggs.

Direction (in degrees) clockwise from north

8 9 13 13 14 18 22 27 30 34
38 38 40 44 45 47 48 48 48 48
50 53 56 57 58 58 61 63 64 64
64 65 65 68 70 73 78 78 78 83
83 88 88 88 90 92 92 93 95 96
98 100 103 106 113 118 138 153 153 155

204 215 223 226 237 238 243 244 250 251
257 268 285 319 343 350

Posterior predictive distribution. The goal of estimation is to compute the predictive
distribution for the next observation xn+1 conditioned on the already-observed data x1:n.
This posterior predictive distribution can be expressed as

p(θn+1|θ1:n) =

∫
p(θn+1|ψ) p(ψ|θ1:n) dψ. (5.10)

Given draws {ψ(r)}Rr=1 = {(w(r),θ(r))}Rr=1 from the posterior distribution, the posterior
predictive distribution can be approximated (via Rao–Blackwellization) as

p(θn+1|θ1:n) ≈ 1

R

R∑
r=1

p(θn+1|ψ(r)) =
1

R

R∑
r=1

m∑
c=1

w(r)
c f(θn+1|φ(r)c ), (5.11)

where m is an upper bound chosen to provide an adequate approximation.7

Sampler. One may adopt the blocked Gibbs sampler described in Gelman et al. (2014,
pp. 552–553). Details of the sampler can be found in Ishwaran and James (2001). This
sampler relies on approximating p(θi|ψ) with a finite sum: Choose m large enough to make(
α/(1 + α)

)m
close enough to zero and set vm = 1.

This sampler uses the classification variables z1:n = (z1, . . . , zn), where zi = c signifies xi
is assigned to cluster c. The Gibbs sampling scheme involves cycling through the following
full conditional posterior distributions:

p(z1:n|θ1:n,w,φ, α) =

n∏
i=1

p(zi|θi,w,φ) (5.12a)

p(w|θ1:n, z1:n,φ, α) = p(w|z1:n, α) (5.12b)

p(φ|θ1:n, z1:n,w, α) =

m∏
c=1

p(θc|θc) (5.12c)

p(α|θ1:n, z1:n,w,φ) = p(α|z1:n), (5.12d)

where θc is the collection of observations for which zi = c.

7Alternatively, Walker’s slice sampler could be used to avoid truncation.
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Figure 11. Turtle direction data and nonparametric density estimate.

The conditional distribution for zi is characterized by

p(zi = c|θ1:n,w,φ) ∝ wc f(θi|φc), (5.13)

for c = 1, . . . ,m. Let nc denote the multiplicity of c in z1:n (i.e., the number of times c
occurs in z1:n). Note

∑m
c=1 nc = n. The weights w can be updated via the stick-breaking

weights v:

vc|z1:n ∼ Beta
(
1 + nc, α+

∑m
c′=c+1 nc′

)
(5.14)

for c = 1, . . . ,m−1. Finally, φc|θc is updated as in a finite mixture model, with the param-
eters for the unoccupied clusters (for which nc = 0) sampled directly from the prior p(φc).
See Appendix B for additional details.

Finally, note that

p(α|z1:n) ∝ p(z1:n|α) p(α) ∝ αd Γ(α)

Γ(n+ α)
p(α), (5.15)

where d is the number of occupied clusters (i.e., clusters for which nc > 0).
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Figure 12. Roulette data and nonparametric density estimate.
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Figure 13. Roulette data and nonparametric density estimate.

Example. See Table 2 for the turtle direction data. [Gould’s data cited by Stephens (1969).
See Table 3, Sample 7 therein.]

See Figure 11 for the estimated density using the turtle direction data.
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Appendix A. Conjugate prior

Guttorp and Lockhart (1988) present the conjugate prior for (µ, κ). As a preliminary,
define the density for x ≥ 08

Bessel(x|a, b) =
I0(a x)/I0(x)b

C(a, b)
, (A.1)

where 0 ≤ a < b and

C(a, b) =

∫ ∞
0

I0(a κ)/I0(κ)b dκ. (A.2)

Note Bessel(1, b) = Bessel(0, b− 1). Also note Bessel(0|a, b) = 1/C(a, b).
The conjugate prior is characterized by (µ, s, n), subject to

0 ≤ µ < 2π and 0 ≤ s < n. (A.3)

Define ζ :=
(
s cos(µ), s sin(µ)

)
and note that s = ‖ζ‖ and µ = atan2(ζ). The conjugate

prior can be expressed as

p(µ, κ) = f(µ|µ, s κ)Bessel(κ|s, n). (A.4)

The isotropic conjugate prior is obtained by setting s = 0:

p(µ, κ) =
1

2π
Bessel(κ|0, n). (A.5)

Let

n = n+ n (A.6a)

ζ = ζ + ζ̂ (A.6b)

s = ‖ζ‖ (A.6c)

µ = atan2
(
ζ
)
, (A.6d)

where (ζ̂, n) are the sufficient statistics for θ1:n. Then the posterior distribution is given by9

p(µ, κ|θ1:n) = f(µ|µ, s κ)Bessel(κ|s, n). (A.7)

With the isotropic prior, ζ = ζ̂, µ = µ̂, s = s, and

p(µ, κ|θ1:n) = f(µ|µ̂, s κ)Bessel(κ|s, n+ n). (A.8)

8The Bessel distribution is not standard and I do not know of any references for it.
9Damien and Walker (1999) provide a Gibbs sampler (via the introduction of two auxiliary variables)

for drawing from (A.7). The advantage of a Gibbs sampler over a Metropolis-Hastings sampler is that no
data-specific tuning is required. However, as noted above, the parametric model may be easily estimated
without resorting to sampling. Nevertheless, as part of a DPM sampling may be required.



16 MARK FISHER

Appendix B. Sampler details

See Best and Fisher (1979) for drawing µ|κ and Forbes and Mardia (2015) for drawing κ|µ.
Forbes and Mardia (2015) characterize what they call the Bessel exponential distribution:10

Bessel-Exp(κ|β0, η) ∝ e−β0 η κ

I0(κ)η
, (B.1)

where β0 > −1 and η > 0. Note that Bessel-Exp(0, b) = Bessel(0, b).
Draws from the prior can be had via

p(µ) = Uniform(µ|0, 2π) (B.2)

p(κ|n) = Bessel-Exp(κ|0, n). (B.3)

Draws from the joint posterior distribution for (µ, κ) can be had via a Gibbs sampler:

p(µ|θ1:n, κ) = f(µ|µ̂, s κ) (B.4)

p(κ|θ1:n, µ, n) = Bessel-Exp

(
κ
∣∣∣ −s cos(µ− µ̂)

n+ n
, n+ n

)
. (B.5)

Appendix C. Extensions

(1) Toroidal data. Joint observations on two circular random variables:

θi = (θi1, θi2) ∈ [0, 2π)2.

It should be straightforward to use orthogonal kernels.
(2) Axial data, for which θ and θ + π (in radians) cannot be distinguished.
(3) Spherical data. And with gaps.
(4) Estimate densities when there are measurement gaps.
(5) Markov switching to model changes in direction.
(6) Put a point mass on uniformity (κ = 0) in the kernel:

f(θ|φ) =

{
ωUniform(θ|0, 2π) κ = 0

(1− ω) vonMises(θ|µ, κ) κ > 0
(C.1)

Comparing p(ω = 1|θ1:n) with p(ω = 0|θ1:n) will tell us something about isotropy.
(7) Compare and contrast with fitting a functional form to observations taken at various

locations on the unit circle.
• Suppose we have a collection of microphones at a single location that listen in

different directions.
• The input is non-negative.
• This takes us into simplex regression where the basis densities are von Mises

distributions:

g(θ|w) = B
k∑
j=1

wj vonMises(θ|µj , k)

10Algorithm 1 in Forbes and Mardia (2015) fails when κ0 ≤ 0 (see line 5). In a personal email, Forbes
suggests fixing the algorithm by modifying line 4 as follows: c1 = max[0, 1/2 + {1− 1/(2 η)}/(2 η)].
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where B > 0, w = (w1, . . . , wk) ∈ ∆k−1, and µj = 2π (j − 1)/k.
(8) Latent variable density estimation

• Compute well-informed prior for µn+1

• Predictive distribution p(µn+1|Θ1:n)
• Likelihood p(Θ1:n|µ1:n) =

∏n
i=1 p(Θi|µi)

p(Θi|µi) =

∫ ∞
0

esi,κi cos(µi−µ̂i)

I0(κi)ni
dκi (C.2)

– κi is nuisance parameter; integrate it out with flat prior
(this requires ni ≥ 2)

• Open-minded prior for µi
– p(µi|ψ) =

∑∞
c=1wc vonMises(µi|ac, bc)

– p(ac, bc) = 1
2π Bessel(bc|ν)

– Prior predictive: p(µi) = 1
2π
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